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Abstract

Our goal is to create a visual odometry system for robots

and wearable systems such that localization accuracies of

centimeters can be obtained for hundreds of meters of dis-

tance traveled. Existing systems have achieved approxi-

mately a 1% to 5% localization error rate whereas our pro-

posed system achieves close to 0.1% error rate, a ten-fold

reduction. Traditional visual odometry systems drift over

time as the frame-to-frame errors accumulate. In this paper,

we propose to improve visual odometry using visual land-

marks in the scene. First, a dynamic local landmark track-

ing technique is proposed to track a set of local landmarks

across image frames and select an optimal set of tracked

local landmarks for pose computation. As a result, the er-

ror associated with each pose computation is minimized to

reduce the drift significantly. Second, a global landmark

based drift correction technique is proposed to recognize

previously visited locations and use them to correct drift ac-

cumulated during motion. At each visited location along

the route, a set of distinctive visual landmarks is automat-

ically extracted and inserted into a landmark database dy-

namically. We integrate the landmark based approach into

a navigation system with 2 stereo pairs and a low-cost In-

ertial Measurement Unit (IMU) for increased robustness.

We demonstrate that a real-time visual odometry system us-

ing local and global landmarks can precisely locate a user

within 1 meter over 1000 meters in unknown indoor/outdoor

environments with challenging situations such as climbing

stairs, opening doors, moving foreground objects etc..

1. Introduction
Various computer vision techniques [10, 8, 1, 4, 7] have

been proposed to develop a vision-based navigation system

(or visual odometry) in the past few years. With the use

of one, two or more cameras, most of the proposed visual

odometry systems detect and track a set of stationary fea-

ture points from the scene and estimate the relative cam-

era motion between two consecutive frames that are close

in time. Subsequently, the relative motions between con-

secutive frames are chained together to obtain the absolute

pose of the visual odometry system at each frame. However,

such an incremental-motion-based visual odometry system

is bound to accumulate errors and drift over time during

navigation due to a variety of reasons including errors as-

sociated with calibration, image quantization, poor-quality

images, inaccurate feature positions and outliers [10]. Be-

cause of this, visual odometry alone is not suitable for the

long-distance navigation tasks where the drift grows super-

linearly with the distance traveled [10]. For example, in

[8], a real-time visual odometry using single stereo-pair is

built and it produces between 1% to 5% drift error over runs

that are several hundred meters long. In [5], another visual

odometry system using stereo vision is built and it generates

4% error over runs of 100 meters. A simple and effective

way to reduce the drift of a visual odometry system is to in-

corporate different types of sensors including GPS [5], IMU

[12] and absolute orientation sensors [10]. However, even

with the use of IMU or absolute orientation sensors, the drift

will continue to grow, albeit at a slower rate.

In this paper, visual landmarks in the scene are utilized

to reduce the drift of visual odometry. First, a dynamic lo-

cal landmark tracking technique is proposed to track a set

of local landmarks across a sequence of image frames and

select an optimal set of tracked local landmarks as feature

points for pose computation. As a result, the error associ-

ated with each pose computation is minimized so that the

drift is reduced significantly. Second, we propose a frame-

work that combines global landmark recognition with local

visual odometry to correct the drift errors accumulated dur-

ing navigation. Specifically, the proposed global landmark

recognition technique is able to recognize whether a loca-

tion has been visited in the past, allowing it to recompute

the pose precisely with the use of recognized landmarks

and correct the accumulated drift errors subsequently. Fi-

nally integrating the landmark based approach within an in-

tegrated multi-camera visual odometry plus IMU system en-

ables us to achieve the precise results of close to 0.1% accu-

racy in unknown indoor/outdoor environments.

2. Related Works
In order to recognize the scenes during revisits, numer-

ous techniques [15, 6, 13] have been proposed to perform

visual place recognition previously. However, most of them

[15, 6] focus on recognizing a small number of discrete

known places with some complicated leaning techniques.
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On the other hand, the distinctive SIFT features [13] are

detected and matched to a pre-built SIFT database map to

locate itself for a robot globally. However, with the pro-

posed database searching technique, the computational cost

increases linearly with the database size [13], which may

not be suitable for large-scale database. However, in re-

cent years, using a text retrieval approach enables query-

ing a large-scale database with an image very efficiently.

In [14], a visual vocabulary is built with k-means cluster-

ing, and objects can be retrieved throughout a large movie

database very fast with the trained visual vocabulary. In [9],

using a hierarchical k-means clustering to build a visual vo-

cabulary tree, the efficiency can be further improved.

Different from the above discussed techniques, we are

not going to assume that either a pre-built landmark database

is available or the landmark database is fixed during naviga-

tion. Instead, as the user travels, a landmark database will

be built on-the-fly by inserting new landmarks dynamically;

simultaneously, whenever the user comes back to a previ-

ously visited place, an efficient landmark searching algo-

rithm is able to retrieve its most similar landmarks from the

landmark database in real-time regardless of its size. This

is a very challenging task since the landmark database will

become extremely large eventually after days of travel.

Similarly, a visual vocabulary tree is also built to index

the landmark database in our paper. Differently, a generic

visual vocabulary tree is first built from a large amount of

representative training data off-line. Then, its configuration

will be updated or trained incrementally with newly cap-

tured landmarks added into the landmark database on-the-

fly. However, as more and more landmarks are added into

the landmark database to train the visual vocabulary tree

during travel, both the quality and efficiency will decrease

dramatically [9]. In order to overcome it, a geo-spatial con-

straint is applied to maintain the landmark database with a

reasonable size for the visual vocabulary tree so that the op-

timal quality and efficiency can be always maintained.

3. Visual Odometry with Local Landmarks

Similar to the system proposed in [8], two calibrated

cameras that form a stereo head are utilized in our visual

odometry system, and the motion of the system is deter-

mined from the pairs of stereo images captured by the stereo

cameras. While in the system proposed in [8], feature

points are matched from one frame to the next (or over a

fixed frames) for pose computation and then discarded, we

proposed to dynamically track a set of feature points over

frames and utilize them as local landmarks for pose compu-

tation. Harris corners are extracted from images and serve as

feature points. As a result, by allowing matching and pose

estimating over longer motion baselines, the error associated

with each pose computation is minimized.

3.1. Dynamic Local Landmark Tracking

The goal of local landmark tracking is to establish cor-

respondence of features amongst non-consecutive frames so

that semi-local pose computation can be performed to con-

trol drift in position and orientation of sequential locations.

Figure 1 illustrates the local landmark tracking scheme. It

consists of the following steps:

time t time t+ktime t+ktime t+1

tracking trackingtracking

pose

computation

...

local landmark

re-detection

... ...

local landmark

detection

Figure 1. The illustration of the dynamic local landmark tracking.

Step 1: 3D local landmark initialization. Given an ini-

tial stereo pair, called reference frame, a set of 3D reference

feature points are extracted. The reference feature points,

called local landmarks, are tracked in subsequent stereo im-

ages.

Step 2: 2D local landmark tracking. Given a new stereo

pair, the set of local landmarks are tracked. As the cam-

era moves, some of the local landmarks will move out of

the field-of-view of the cameras. Besides the local land-

marks that move out of the field-of-view, some local land-

marks also lose tracking due to their non-distinctive inten-

sity distributions. Local landmarks with more distinctive in-

tensity distributions survive longer during tracking. Hence,

via tracking, the unstable local landmarks, which usually

happen to be the false matches, are reduced significantly.

Step 3: Spatial distribution checking and pose compu-

tation. The aim of local landmark tracking is to obtain

a set of reliably tracked local landmarks that contains few

false matches. Although the number of falsely tracked lo-

cal landmarks will decrease as the tracking continues, more

and more stable local landmarks will also move out of the

field-of-view of the camera as the system moves. Since the

spatial distribution of the tracked local landmarks is essen-

tial for accurate pose estimation, a metric is needed to mea-

sure the spatial distribution of the tracked local landmarks.

When the set of tracked local landmarks does not satisfy a

spatial distribution criterion, a set of new local landmarks

is initialized. A simple but effective metric is developed to

measure the spatial distribution of the tracked local land-

marks. Specifically, the left image of the 3D reference pair

is divided into 10 × 10 grids. The total number of grids

that contain local landmarks is used as a metric score. The

spatial distribution metric is computed for each frame. If

the spatial distribution metric is greater than a predefined

threshold (50 empirically), the pose is computed from the

3D-2D correspondences of tracked local landmarks between

the current stereo pair and the 3D reference frame.



Step 4: Updating 3D local landmarks. A new reference

frame is established, if the spatial distribution metric for

matches between subsequent frames is below a threshold.

Therefore, the current stereo pair will be updated as the 3D

reference frame, and a new set of reference feature points

will be extracted as local landmarks. These newly extracted

local landmarks are tracked in the subsequent stereo image

frames, and the whole dynamical local landmark tracking

technique repeats to recover the entire traveled 3D path.

With the use of dynamic local landmark tracking, a set

of stable feature points that contains fewer false matches is

obtained to produce a more accurate pose. On the other

hand, during 3D reconstruction, the uncertainty of the re-

constructed 3D coordinates of a feature point varies with the

depth dramatically. since the established 2D-3D local land-

mark correspondences between two stereo pairs are usually

more than 2 frames apart (could be several meters apart), de-

pending on the moving speed and the motion type of the sys-

tem, its 3D reconstructed error associated with each stereo

pair can be considerably different. Therefore, a dynamic

reference selection technique is proposed to automatically

select the stereo pair with less 3D reconstruction error as

the reference frame during pose computation. As a result, a

much more accurate pose is computed.

During the dynamic local landmark tracking, a same set

of local landmarks extracted from the 3D reference frame is

tracked across its subsequent images so that the number of

tracked local landmarks at each image can be used to char-

acterize the degree of match between the image and 3D ref-

erence image. With the use of proposed spatial distribution

metric above, it guarantees that there are enough local land-

marks tracked across the images. Therefore, these images

are roughly from the same scene and the 3D reference frame

can be used as a representative image for the scene. Subse-

quently, the local landmarks extracted from the 3D refer-

ence frame is stored into a landmark database to represent

the scene at this location accurately.

4. Visual Odometry with Global Landmarks

Another key element of our proposed framework is to

recognize the revisits during navigation. The revisits need

to be recognized even when the user returns to a previously

seen location from a completely different direction. In or-

der to address this, a multi-camera visual odometry sys-

tem equipped with two pairs of stereo cameras is utilized.

Specifically, as shown in Figure 2(a), one pair of stereo

cameras faces forward while another pair of stereo cameras

faces backwards so that the field of view of the system can

be extended significantly. The cameras produce gray-scale

640 × 480 pixel images (Figure 2 (b)).

A big advantage of using the multi-camera approach is

that it provides great robustness in situations where one

camera is looking at a textureless area or only seeing mov-

ing objects. Multiple cameras looking backward and for-

Frontal View

Back View

(a) (b)
Figure 2. The multi-camera system: (a) Frontal and back views of

the system; (b) Captured images of both stereo pairs.

ward ameliorate this commonly occuring situation in real

world scenes. The simple fusing technique proposed in [11]

is adopted to fuse the pose outputs from both stereo pairs

together as the final pose of the system. This robustness is

further increased by integrating with an inexpensive IMU

unit, which is a $2K Crista IMU that drifts over 720o per

hour. Such an inexpensive IMU alone with that high drift

rate would be a non-starter, so a Kalman Filter (KF) is used

to integrate the IMU measurements with the multi-camera

visual odometry measurements [16]. The system automati-

cally detects if either the IMU or multi-camera visual odom-

etry readings has a large error and ignores them.

So far, with the use of local landmarks and an IMU in

the proposed multi-camera visual odometry system, the drift

can be reduced significantly compared to the original one-

stereo-pair system proposed in [8]. However, drift from the

true trajectory due to accumulation of errors over time is in-

evitable in any relative measurement system. This is where

global landmark recognition and resetting of the camera lo-

cation plays a significant role in reducing global drifts.

4.1. The Proposed Framework

Figure 3 shows a flowchart of the global landmark-based

route correction algorithm for our visual odometry system

with two stereo-camera pairs. The benefit of using such a

multi-camera based visual odometry system is to extend the

field of view of the system so that the chances of recognizing

the global landmarks during route re-visits are increased.
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Figure 3. The global landmark-based route correction flowchart for

a visual odometry system with forward/backward stereo pairs.

As shown in Figure 3, given a time stamp t, the first step



of our proposed algorithm is to detect and track a set of nat-

ural local landmarks from the images of the forward and

backward stereo pairs individually. Subsequently, with the

use of the extracted local landmarks, the pose of each stereo

pair is estimated individually and they are further fused to-

gether via the adopted fusing technique to estimate the pose

of the visual odometry system Pr.

Simultaneously, the extracted landmarks from both

stereo pairs at the current time stamp t are used to search

the landmark database for their most similar landmarks via

the efficient database searching technique described in Sec-

tion 4.3. Once a set of similar landmarks is returned, a new

pose Pl is estimated by comparing the current image posi-

tion of these landmarks with the 3D location stored in the

database. The drift error accumulated in the pose Pr is cor-

rected by Pl to obtain the final pose Pc. Note if matched

landmarks are not found in the database then the new land-

marks are inserted into the landmark database dynamically.

From Figure 3, we can see that there are two important

components in the proposed framework: landmark recogni-

tion and pose correction. Both components are tightly cou-

pled to benefit from each other.

4.2. Dynamic Landmark Database

During navigation, the local scene information at any

particular point along the route is captured by “landmark

snapshots”. Each landmark snapshot is composed of the

2D coordinates, 3D coordinates and HOG descriptors of the

landmarks as well as the estimated 3D camera location. The

landmark database consists of a list of these snapshots ex-

tracted from the scene at the location associated with the

3D reference frame during local landmark tracking along

the route. The combination of depth-dependent HOG de-

scriptors described at Section 4.2.1 along with the spatial

configuration of the landmarks makes them very distinctive

and they serve as the fingerprint of the location. When the

user arrives at a new location, the extracted landmarks from

the scene are matched to the landmark database to decide

whether the new location has been visited before. In ad-

dition, storing only the local landmarks extracted from each

3D reference frame during local landmark tracking produces

a compact but rich landmark database.

4.2.1 Epipolar Constrained Landmark Matching using

HOG

As we discussed in Section 3, given a pair of stereo images

captured at each time t, we first detect a set of Harris cor-

ners as natural feature points from the left and right images

respectively. Once the feature points are matched between

the left and right images, the 3D coordinates of each feature

point are computed by triangulation and they will serve as

the local landmarks for the stereo pair. In order to character-

ize local appearance of each local landmark distinctly, the

HOG descriptor [2] is computed from the left image of the

stereo pair to represent each local landmark.

Instead of computing the HOG descriptor with a fixed

scale to select the image patch size, the scale S of the HOG

descriptor for each landmark is determined automatically

via the following equation:

S = Sref ×
Zref

Z
(1)

where Z is the depth of the landmark in the local camera

coordinate system at the current position, and Sref is the

scale used for the landmarks whose depth is equal to Zref .

Sref and the Zref can be set heuristically. Therefore, the

closer the landmark to the camera, the larger the scale is.

Under the above proposed scheme, each image is repre-

sented by a set of extracted landmarks, and each landmark

is associated with the 2D image coordinates, 3D coordinates

and an HOG descriptor. Given two images taken at differ-

ent locations, the task of landmark matching is to match the

extracted landmarks between them using the HOG descrip-

tors. Specifically, for each landmark in the first image, all

the potential landmarks in the second image are searched

for the correspondence that produces the highest similarity

score. The search is based on the cosine similarity score of

the HOG descriptor vectors between two landmarks. Since

the matching technique described above does not consider

any geometric or motion constraints, a large percentage of

false matches are obtained. In order to improve the land-

mark matching, epipolar geometry constraints are utilized

to eliminate the false matches. Specifically, from the ob-

tained matches between two images, the fundamental matrix

F is first estimated via the robust RANSAC technique [3].

Subsequently, based on the estimated fundamental matrix

F , those matches that produce larger residuals than a pre-

defined threshold value are treated as false matches and dis-

carded.

Via the proposed technique above, the landmark match-

ing between two images can be performed very effectively.

However, its computational expense is quite expensive so

that it is not suitable to search a large landmark database

(more than 1000 images) using the proposed landmark tech-

nique directly. In order to overcome this issue, an effi-

cient hierarchical landmark database search strategy is pro-

posed. First, an on-the-fly database indexing technique with

a generic vocabulary tree is introduced.

4.2.2 On-The-Fly Database Indexing with a Generic

Vocabulary Tree

As the user travels, the size of the landmark database will

increase rapidly as new landmarks are captured. There-

fore, it is quite different from most of the previous appli-

cations where the database is usually fixed so that both the

vocabulary-building and the database indexing can be per-

formed on the same database off-line. In addition, build-

ing a large vocabulary tree is very time-consuming, which

makes it impossible to perform both vocabulary-building



and database indexing simultaneously on the updated land-

mark database when new landmarks were added in real-

time.

Therefore, a generic vocabulary is built off-line from a

large set of training HOG descriptors, aiming to cover all

the possible scenes. Similar to [9], a vocabulary tree is built

by hierarchical k-means clustering. Once the generic vocab-

ulary tree is built, given a database D, the standard weight-

ing mechanism called “Term Frequency-Inverse Document

Frequency (TF-IDF)” is performed to train the built generic

vocabulary tree. Specifically, a weight wi is assigned to each

node i as follows:

wi = log
N

Ni

(2)

where N is the number of images in the whole database,

and Ni is the number of images in the database with at least

one descriptor path through node i. Therefore, for a vo-

cabulary tree with k nodes, each image Id in the database

can be represented as a vocabulary quantization vector Vd =
(t1, t2, ..., tk)T as follows:

ti =
nid

nd

wi (3)

where nid is the number of descriptors path through node i

in the image Id, and nd is the total number of descriptors in

the image Id.

Once the vocabulary tree is trained via a given database

D, given a query image Iq , the images in the database can be

ranked by the similarity scores between the computed query

vector Vq and all the vectors Vd in the database. During

the implementation, inverted files [14] are utilized to facil-

itate efficient database indexing. Specifically, each node i

is associated with an inverted file Fi, and each inverted file

Fi stores a list of database images (including image ID, the

term frequency nid

nd

) that path through node i with at least

one descriptor, and the length of the list Ni. Given a query

image Iq , only the inverted files of the nodes that it paths

through need to be utilized for similarity scoring (the num-

ber of inverted files is at most L × nd with a tree that has

L levels). Therefore, the use of inverted files makes the re-

trieval extremely fast.

When a new image of landmarks is added into the

database, the vocabulary tree is updated incrementally to ac-

commodate the new image in the following two steps. First,

the database size N will be updated as N = N +1. Second,

for each landmark descriptor in the new image, the inverted

file of each node that it visited at each level will be updated

by inserting the new database image ID, updating the term

frequency nid

nd

and the new list length Ni. Similarly, when an

existing image of landmarks is removed from the database,

the database size and the inverted file of each visited node

can be updated accordingly.

4.3. Efficient Database Searching
Via the above proposed on-the-fly database indexing

technique, the database images can be ranked efficiently ac-

cording to the similarity scores computed with a query im-

age. In order to improve the retrieval quality, the top-ranked

m candidates in the above step will be further matched

with the query image using the proposed epiplar-constrained

landmark matching via HOG. Usually, the most similar im-

ages will be in the top-ranked images so that the number

of candidates m can be set to small. With the above two-

step scheme, the landmark database searching can be done

extremely efficient.

However, the size of the landmark database increases

rapidly as the travel continues so that the database can con-

tain several billion images easily after several days’ travel.

Therefore, it is really difficult to guarantee that the selected

top-ranked m candidates will always contain the right im-

age for such a large-scale database. As a result, we propose

an efficient hierarchical database search strategy composed

of the following three steps:

Step 1: Fast Database Pruning via the geo-spatial con-

straints. When the user travels to a new location, based

on its estimated 3D location as well as the estimated drift

rate (or uncertainty), a geo-spatial search region is obtained

automatically, which is shown as a yellow circle in Figure

4. Subsequently, with the use of the geo-spatial search re-

gion, a set of candidates of the landmark snapshots can be

obtained quickly from the landmark database and put into a

landmark candidate database.

Database

CacheStart

Current

Camera

Trajectory

Geo-spatial

Search region

Figure 4. Geo-spatially constrained candidate selection.

Since the number of selected candidates in the candi-

date database is only determined by the size of the geo-

spatial search region, which is typically much smaller than

the whole database, we can reduce a large-scale database

(millions or more) to a smaller candidate cache (thousands)

during landmark database search.

Step 2: Fast Candidate Pruning via a vocabulary tree.

During travel, the system usually starts with an empty land-

mark candidate database. As travel continues, new images

will be added into the landmark candidate database and odd

images will be removed from it periodically via the geo-

spatial constraint in Step 1. Simultaneously, the generic vo-

cabulary tree is updated incrementally with both the old and

new images as described in Section 4.2.2. Since the num-

ber of the old and new images is small, the updating of the



vocabulary tree is done quickly.

Once the vocabulary tree is updated, it is used subse-

quently to rank all the images in the landmark candidate

database for a given query image. Finally, a smaller can-

didate cache that contains only the top-ranked m (usually

less than one hundred) is obtained.

Step 3: Epipolar-Constrained Landmark Matching via

HOG. Once a smaller candidate cache is obtained, the pro-

posed HOG-based landmark matching algorithm is acti-

vated to search the candidate cache. The number of matched

landmarks is used to characterize the degree of matching

for each snapshot. Once a snapshot that satisfies a pre-

defined similarity measurement threshold is returned, the

search stops.

4.4. Global Landmark-based Pose Correction

With the use of recognized landmarks serving as the ref-

erence points, a new pose Pr of the visual odometry system

at the current position can be recomputed directly with the

standard technique using preemptive RANSAC followed by

iterative refinement. At the same time, it will propagate back

to a list of landmark snapshots at the previous positions in

the database and correct their poses one by one.

5. Experiment Results
5.1. Performance of using Local Landmarks

In order to evaluate the improvements using local land-

marks, we applied it to a set of collected video sequences

with ground-truth (only the frontal stereo pair). Each video

sequence was recorded at 30fps while a user wearing our

system was traveling along a set of predefined routes. A

set of key-points was established along the path, and the

user had to pass through them exactly. The key-points’ lo-

cations along each path were measured by a high-precision

Differential GPS (DGPS) with centimeter accuracy and they

will serve as the ground-truth to evaluate the performance of

our improved visual odometry system. Figure 5 (a) shows

a measured 3D trajectory of the user by DGPS, which is

around 106 meters long.

(a) (b)
Figure 5. The comparison between (a) the 3D trajectory measured

by DGPS, and (b) the 3D trajectories estimated by our improved

visual odometry using local landmarks

However, the coordinate systems of the DGPS and the vi-

sual odometry are different so that the accuracy of the visual

odometry cannot be measured directly. Therefore, a relative

localization accuracy metric is computed as follows. First,

the coordinates of the set of key-points along the 3D trajec-

tories measured by both DGPS and our visual odometry sys-

tem are collected. Second, select a key-point as a reference

point, and compute the distance between the reference point

and each of the remaining key-points in both coordinate sys-

tems individually. Once all the distances are computed, they

are summed in both coordinate systems individually and the

summed distances are subtracted and divided by the number

of remaining key-points to obtain an average error. Finally,

the absolute value of the obtained average error is assigned

to the reference point. Finally, the average of the relative

localization accuracies over all the key-points is utilized to

characterize the overall performance of our improved visual

odometry system.

Figure 5 (b) shows an example of the measured 3D tra-

jectories of a user by our system under different improve-

ments proposed in Section 3.1. Table 1 also summarizes

the relative localization accuracies of the system under these

improvements. Clearly, after integrating the proposed im-

provements into the visual odometry system, the average

relative localization error decreases from 4 meters (original

technique proposed in [8]) to less than 1 meter eventually

for single stereo-based visual odometry.

Table 1. The relative localization accuracies of the improved visual

odometry system under different improvements (meters)

Original Dynamic local Dynamic

landmark reference

(magenta) tracking (red) selection (blue)

Min. 0.1480 0.6679 0.0648

Max. 10.4110 3.8894 2.0981

Med. 2.4633 0.8933 0.7907

Avg. 4.1788 1.5710 0.8311

5.2. Performance of Landmark Database Indexing

As introduced in Section 4.2.2, the key to make the online

landmark matching with a large-scale landmark database

possible is the use of geo-spatial constrained online updating

of a generic vocabulary tree. In order to build such a generic

vocabulary tree, a large amount of videos were recorded

while the user was travelling through various indoor and

outdoor environments, such as offices, malls, forests, down-

towns, etc.. Finally, around 45k images are selected from

these videos, and all the HOGs of the Harris corners in all

the images are extracted to build a vocabulary tree with 10
branch factors and 6 levels. Specifically, similar procedures

discussed in [9] using the hierarchical k-means clustering is

applied, and the number of times that the EM algorithm will

run is set to 25 for each level.

Once the generic vocabulary tree is built, given a land-

mark candidate database at any time t during travel, depend-



ing on the geo-spatial search region, usually there are several

new images that need to be inserted into the generic vocabu-

lary tree to update it. It is done very efficiently and only the

inverted files of the visited nodes of the trees need to be up-

dated. When scoring each image in the landmark candidate

database, we found that the inner nodes of the vocabulary

tree is not useful so that only the inverted files associated

with the leaf nodes are involved in the similarity scoring,

which further saves some memory usages and computations

by cutting all the inverted files of the inner nodes.

In order to demonstrate the effectiveness of the proposed

geo-spatial constrained database indexing technique, a

video sequence containing around 27k frames was recorded

first when the user wearing our system travelled along a pre-

defined route that has 10 key-points marked on the ground

are shown in Figure 6. All the images are inserted into

generic vocabulary tree and the images captured when the

user stepped onto these 10 key-points serve as ground truth.

During test, at each key-point, 10 images was collected

while standing randomly within its 2-meter radius. These

test images exhibits quite large camera view-point changes

from their database images. Without the geo-spatial con-

straint, the average rank of these 100 retrievals is 94.2, while

the average rank of these 100 retrievals is only 3.8 with geo-

spatial constraint. It clearly shows that using the geo-spatial

constraint will improve the rank significantly.
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Figure 6. The part of the travelled route.

5.3. Performance of the Multi-camera Based Visual
Odometry with Global Landmark Correction

In order to evaluate the performance of the proposed

multi-camera based visual odometry system integrated with

local and global landmark matching, a set of experiments

were conducted under the indoor and outdoor environments.

5.3.1 Indoor/Outdoor Sequence with Loop Closure

In this experiment, a video sequence was recorded at 15fps

while the user wearing our system travelled along a prede-

fined route that goes through outdoors and indoors as shown

in Figure 7 (a) and two key-locations are marked as blue

along the route. The first blue key-location associated with

“0” is the starting point and the second one associated with

“1” is a crossing point along the route. Both key-locations

were marked on the ground and the user had to pass through

them during travel. The recorded video sequence is around

7 minutes and 15 seconds long, and the total travelled dis-

tance is around 545.51 meters.

Figure 8(a) shows the estimated trajectory of the multi-

camera visual odometry system without global landmark

(a) (b)
Figure 7. (a) The planned route on the map (manually drew, di-

rected by numbers); (b) The estimated route plotted on the map.

recognition. From the enlarged region around the location

“1”, it shows clearly that the error accumulates and the drift

grows gradually during navigation. Table 2 reports the mea-

sured distance deviations for two fixed key-locations along

the route during the revisits. In terms of the loop closure

deviation, the error using multi-camera visual odometry and

IMU is around 2.08 meters for this 546-meter long trip.
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(a) (b)
Figure 8. The estimated trajectories for the outdoor sequence:

(a) Multi-camera based visual odometry alone. (b) Multi-camera

based visual odometry with global landmark correction.

However, if we integrate the global landmark recogni-

tion into the multi-camera visual odometry system, all the

revisits along the route can be successfully recognized to

correct the drift. Figure 8 (b) shows the estimated trajec-

tory with global landmark recognition. From the enlarged

region around the location “1”, it shows clearly that the er-

ror is corrected. From Table 2, we can see that the measured

distance deviations for both fixed key-locations are less than

0.5 meters during the revisits. In terms of the loop closure

deviation, the error is around 0.24 meters for this 546-meter

long trip. Figure 7 (b) shows the estimated trajectory plot-

ted on the map that the user traveled and it corresponds quite

accurately with the planned route shown in 7 (a).

Table 2. The deviations at the key-positions during revisits (meters)

Point 1 Point 0

No Landmark Correction 1.05m 2.08m

Landmark Correction 0.16m 0.24m

5.3.2 Indoor Three-Floor Building Sequence

In this experiment, a video sequence was recorded at 15fps

while the user traveled inside a three-floor build as shown



in Figure 9 (a). Specifically, starting from a fixed key loca-

tion in a room on the third floor, the user left the room and

traveled through the corridor and then took the stairs to the

second floor. On the second floor, the user traveled through

the corridor and came back to the same stairs and then went

down to the first floor. After traveling through the corridor

on the first floor, the user went back to the same stairs and

took the stairs directly to the third floor and back to the room

of origin and the start location. The whole video sequence is

4 minutes and 20 seconds long, and the user traveled around

242 meters. Some randomly selected images are shown in

Figure 9 (b). As shown in the video, during the travel, the

user opened the doors along the route thus exposing new

areas and also subjecting the system to a wide variety of il-

lumination and geometry scenarios.

(a) (b)
Figure 9. (a) The three-floor building; (b) The randomly selected

left images of the frontal pair.

Figure 10(a) shows the estimated 3D trajectory of the

user for this indoor stair sequence without landmark recog-

nition. The error accumulates gradually as the user travels

so that the estimated trajectory is not able to end at the lo-

cation where it starts. In terms of loop closure accuracy, the

final measured distance deviation is around 1.8 meters.

(a) (b)
Figure 10. The estimated trajectories for the indoor stair sequence:

(a) Multi-camera based visual odometry alone; (b) Multi-camera

based visual odometry with global landmark correction.

However, as shown in Figure 10(b), the 3D trajectory of

the user can be estimated precisely once we integrate global

landmark recognition. The final measured distance devia-

tion is only 0.13 meters, which shows that the drift is cor-

rected successfully and the estimated trajectory ends at the

location where it started precisely. The three-floor structure

and the stairs are clearly revealed.

6. Conclusion
In this paper, visual landmarks are utilized to improve the

visual odometry. Equipping the visual odometry with the

capability to recognize a set of stationary visual landmarks

from the scene locally and globally during navigation, we

can achieve close to 0.1% localization accuracy. Using the

proposed techniques, we have developed a real-time wear-

able multi-camera visual odometry system with one pair fac-

ing forward and the other pair facing backward, and it runs

at 15fps comfortably in a machine with a Duo-Core 3.4Ghz

processor and 2G memory.
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